
    0h?                        d Z ddlmc mZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ ddlmZ ddlmZ dd	lmZ d
ZdZ e       Z edd      	 	 	 	 	 	 	 dd       Z	 ddZ ed      dd       Z ed      dd       Zej2                  j5                  dej6                  ej8                        e_         ej0                  j                   e_         y)zInception V3 model for TF-Keras.

Reference:
  - [Rethinking the Inception Architecture for Computer Vision](
      http://arxiv.org/abs/1512.00567) (CVPR 2016)
    N)backend)imagenet_utils)training)VersionAwareLayers)
data_utils)layer_utils)keras_exportz|https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels.h5zhttps://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5z+keras.applications.inception_v3.InceptionV3zkeras.applications.InceptionV3c           
         |dv s7t         j                  j                  j                  |      st	        d|       |dk(  r| r|dk7  rt	        d|       t        j                  |ddt        j                         | |      }|t        j                  |	      }n/t        j                  |      st        j                  ||
      }n|}t        j                         dk(  rd}nd}t        |ddddd      }	t        |	dddd      }	t        |	ddd      }	t        j                  dd      |	      }	t        |	dddd      }	t        |	dddd      }	t        j                  dd      |	      }	t        |	ddd      }
t        |	ddd      }t        |ddd      }t        |	ddd      }t        |ddd      }t        |ddd      }t        j                  ddd      |	      }t        |ddd      }t        j                  |
|||g|d      }	t        |	ddd      }
t        |	ddd      }t        |ddd      }t        |	ddd      }t        |ddd      }t        |ddd      }t        j                  ddd      |	      }t        |ddd      }t        j                  |
|||g|d      }	t        |	ddd      }
t        |	ddd      }t        |ddd      }t        |	ddd      }t        |ddd      }t        |ddd      }t        j                  ddd      |	      }t        |ddd      }t        j                  |
|||g|d       }	t        |	d!dddd      }t        |	ddd      }t        |ddd      }t        |ddddd      }t        j                  dd      |	      }t        j                  |||g|d"      }	t        |	ddd      }
t        |	d#dd      }t        |d#dd$      }t        |dd$d      }t        |	d#dd      }t        |d#d$d      }t        |d#dd$      }t        |d#d$d      }t        |ddd$      }t        j                  ddd      |	      }t        |ddd      }t        j                  |
|||g|d%      }	t!        d&      D ]  }t        |	ddd      }
t        |	d'dd      }t        |d'dd$      }t        |dd$d      }t        |	d'dd      }t        |d'd$d      }t        |d'dd$      }t        |d'd$d      }t        |ddd$      }t        j                  ddd      |	      }t        |ddd      }t        j                  |
|||g|d(t#        d|z         z         }	 t        |	ddd      }
t        |	ddd      }t        |ddd$      }t        |dd$d      }t        |	ddd      }t        |dd$d      }t        |ddd$      }t        |dd$d      }t        |ddd$      }t        j                  ddd      |	      }t        |ddd      }t        j                  |
|||g|d)      }	t        |	ddd      }t        |d*dddd      }t        |	ddd      }t        |ddd$      }t        |dd$d      }t        |ddddd      }t        j                  dd      |	      }t        j                  |||g|d+      }	t!        d&      D ]  }t        |	d*dd      }
t        |	d!dd      }t        |d!dd      }t        |d!dd      }t        j                  ||g|d,t#        |      z         }t        |	d-dd      }t        |d!dd      }t        |d!dd      }t        |d!dd      }t        j                  ||g|.      }t        j                  ddd      |	      }t        |ddd      }t        j                  |
|||g|d(t#        d/|z         z         }	 | rOt        j%                  d01      |	      }	t        j&                  ||       t        j)                  ||d23      |	      }	n=|d4k(  rt        j%                         |	      }	n|d5k(  rt        j+                         |	      }	|t-        j.                  |      }n|}t1        j2                  ||	d61      }|dk(  rP| rt5        j6                  d7t8        d8d9:      }nt5        j6                  d;t:        d8d<:      }|j=                  |       |S ||j=                  |       |S )=a  Instantiates the Inception v3 architecture.

    Reference:
    - [Rethinking the Inception Architecture for Computer Vision](
        http://arxiv.org/abs/1512.00567) (CVPR 2016)

    This function returns a TF-Keras image classification model,
    optionally loaded with weights pre-trained on ImageNet.

    For image classification use cases, see
    [this page for detailed examples](
      https://keras.io/api/applications/#usage-examples-for-image-classification-models).

    For transfer learning use cases, make sure to read the
    [guide to transfer learning & fine-tuning](
      https://keras.io/guides/transfer_learning/).

    Note: each TF-Keras Application expects a specific kind of input
    preprocessing. For `InceptionV3`, call
    `tf.keras.applications.inception_v3.preprocess_input` on your inputs before
    passing them to the model. `inception_v3.preprocess_input` will scale input
    pixels between -1 and 1.

    Args:
      include_top: Boolean, whether to include the fully-connected
        layer at the top, as the last layer of the network. Defaults to `True`.
      weights: One of `None` (random initialization),
        `imagenet` (pre-training on ImageNet),
        or the path to the weights file to be loaded. Defaults to `imagenet`.
      input_tensor: Optional TF-Keras tensor (i.e. output of `layers.Input()`)
        to use as image input for the model. `input_tensor` is useful for
        sharing inputs between multiple different networks. Defaults to `None`.
      input_shape: Optional shape tuple, only to be specified
        if `include_top` is False (otherwise the input shape
        has to be `(299, 299, 3)` (with `channels_last` data format)
        or `(3, 299, 299)` (with `channels_first` data format).
        It should have exactly 3 inputs channels,
        and width and height should be no smaller than 75.
        E.g. `(150, 150, 3)` would be one valid value.
        `input_shape` will be ignored if the `input_tensor` is provided.
      pooling: Optional pooling mode for feature extraction
        when `include_top` is `False`.
        - `None` (default) means that the output of the model will be
            the 4D tensor output of the last convolutional block.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional block, and thus
            the output of the model will be a 2D tensor.
        - `max` means that global max pooling will be applied.
      classes: optional number of classes to classify images
        into, only to be specified if `include_top` is True, and
        if no `weights` argument is specified. Defaults to 1000.
      classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        When loading pretrained weights, `classifier_activation` can only
        be `None` or `"softmax"`.

    Returns:
      A `keras.Model` instance.
    >   NimagenetzThe `weights` argument should be either `None` (random initialization), `imagenet` (pre-training on ImageNet), or the path to the weights file to be loaded; Received: weights=r     zjIf using `weights` as `"imagenet"` with `include_top` as true, `classes` should be 1000; Received classes=i+  K   )default_sizemin_sizedata_formatrequire_flattenweights)shape)tensorr   channels_first          )   r   valid)stridespadding)r   @   )r   r   )r   P      0      `   r   r   samemixed0)axisnamemixed1mixed2i  mixed3      mixed4r      mixedmixed7i@  mixed8mixed9_i  )r&   	   avg_poolr'   predictions)
activationr'   avgmaxinception_v3z2inception_v3_weights_tf_dim_ordering_tf_kernels.h5models 9a0d58056eeedaa3f26cb7ebd46da564)cache_subdir	file_hashz8inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5 bcbd6486424b2319ff4ef7d526e38f63)tfiogfileexists
ValueErrorr   obtain_input_shaper   image_data_formatlayersInputis_keras_tensor	conv2d_bnMaxPooling2DAveragePooling2DconcatenaterangestrGlobalAveragePooling2Dvalidate_activationDenseGlobalMaxPooling2Dr   get_source_inputsr   Modelr   get_fileWEIGHTS_PATHWEIGHTS_PATH_NO_TOPload_weights)include_topr   input_tensorinput_shapepoolingclassesclassifier_activation	img_inputchannel_axisx	branch1x1	branch5x5branch3x3dblbranch_pool	branch3x3	branch7x7branch7x7dblibranch7x7x3branch3x3_1branch3x3_2branch3x3dbl_1branch3x3dbl_2inputsmodelweights_paths                             `/var/www/html/engine/venv/lib/python3.12/site-packages/tf_keras/src/applications/inception_v3.pyInceptionV3rt   /   sd
   T ))RUU[[-?-?-H! ")		+
 	
 *D  'y*
 	
 !33--/#K LL{L3	&&|4LLI$I  "&66)RAvwGA!RAw/A!RAAFF3A6A!RAw/A!S!Q0AFF3A6A !RA&I!RA&I)RA.IQAq)L\2q!4L\2q!4L)) * 	K KQ2K	I|[9 	 	A !RA&I!RA&I)RA.IQAq)L\2q!4L\2q!4L)) * 	K KQ2K	I|[9 	 	A !RA&I!RA&I)RA.IQAq)L\2q!4L\2q!4L)) * 	K KQ2K	I|[9 	 	A !S!QHIQAq)L\2q!4Lb!QL %%ff%=a@K	L+.\ 	 	A
 !S!Q'I!S!Q'I)S!Q/I)S!Q/IQQ*L\315L\315L\315L\315L)) * 	K Ka3K	I|[9 	 	A 1X 
aa+	aa+	ia3	ia3	 CA. sAq9 sAq9 sAq9 sAq9--FF . 

  S!Q7	<=3q1u:%  
#
0 !S!Q'I!S!Q'I)S!Q/I)S!Q/IQQ*L\315L\315L\315L\315L)) * 	K Ka3K	I|[9 	 	A !S!Q'I)S!QPIAsAq)KKa3KKa3KS!QK %%ff%=a@K	K-Lx 	 	A
 1X 
aa+	aa+		315	315&&+&SV# ' 
	 !CA. sAq9"<a;"<a;))^,< * 
 --FF . 

  S!Q7	<=3q1u:%  
1
: ))z):1=**+@'JLL 5M  

 e--/2A))+A.A ..|<NN61>:E *%..D%<	L &..J#%<	L 	<( L 
	7#L    c           	         ||dz   }|dz   }nd}d}t        j                         dk(  rd}	nd}	t        j                  |||f||d|      |       } t        j	                  |	d|	      |       } t        j                  d
|      |       } | S )a  Utility function to apply conv + BN.

    Args:
      x: input tensor.
      filters: filters in `Conv2D`.
      num_row: height of the convolution kernel.
      num_col: width of the convolution kernel.
      padding: padding mode in `Conv2D`.
      strides: strides in `Conv2D`.
      name: name of the ops; will become `name + '_conv'`
        for the convolution and `name + '_bn'` for the
        batch norm layer.

    Returns:
      Output tensor after applying `Conv2D` and `BatchNormalization`.
    N_bn_convr   r   r   F)r   r   use_biasr'   )r&   scaler'   relur5   )r   rF   rG   Conv2DBatchNormalization
Activation)
rb   filtersnum_rownum_colr   r   r'   bn_name	conv_namebn_axiss
             rs   rJ   rJ     s    & ,7N		  "&66	' 	 	 		A 	!!we'!J1MA&t,Q/AHru   z0keras.applications.inception_v3.preprocess_inputc                 2    t        j                  | |d      S )Nr@   )r   mode)r   preprocess_input)rb   r   s     rs   r   r     s    **	{ ru   z2keras.applications.inception_v3.decode_predictionsc                 0    t        j                  | |      S )N)top)r   decode_predictions)predsr   s     rs   r   r     s    ,,U<<ru    )r   reterror)Tr   NNNr   softmax)r$   r#   N)N)r!   )__doc__tensorflow.compat.v2compatv2r@   tf_keras.srcr   tf_keras.src.applicationsr   tf_keras.src.enginer   tf_keras.src.layersr   tf_keras.src.utilsr   r    tensorflow.python.util.tf_exportr	   rW   rX   rG   rt   rJ   r   r   PREPROCESS_INPUT_DOCformatPREPROCESS_INPUT_RET_DOC_TFPREPROCESS_INPUT_ERROR_DOC ru   rs   <module>r      s    " !   4 ( 2 ) * :F 
L 
 
	 1$
 #^	^D HL'T @A B BC= D= *>>EE	22

3
3 F   
 ,>>FF  ru   