
    0h                     V    d Z ddlZddlZddlZddlmZ ddlmZ  ed      dd       Z	y)zFashion-MNIST dataset.    N)get_file)keras_exportz&keras.datasets.fashion_mnist.load_datac           	         t         j                  j                  dd      }d}g d}| r6t         j                  j                  |       } t        j                  | d       g }|D ]#  }|j                  t        |||z   | |             % t        j                  |d   d	      5 }t        j                  |j                         t        j                  d
      }ddd       t        j                  |d   d	      5 }t        j                  |j                         t        j                  d      j                  t              dd      }	ddd       t        j                  |d   d	      5 }t        j                  |j                         t        j                  d
      }
ddd       t        j                  |d   d	      5 }t        j                  |j                         t        j                  d      j                  t        
      dd      }ddd       	f
ffS # 1 sw Y   HxY w# 1 sw Y   xY w# 1 sw Y   xY w# 1 sw Y   6xY w)a  Loads the Fashion-MNIST dataset.

    This is a dataset of 60,000 28x28 grayscale images of 10 fashion categories,
    along with a test set of 10,000 images. This dataset can be used as
    a drop-in replacement for MNIST.

    The classes are:

    | Label | Description |
    |:-----:|-------------|
    |   0   | T-shirt/top |
    |   1   | Trouser     |
    |   2   | Pullover    |
    |   3   | Dress       |
    |   4   | Coat        |
    |   5   | Sandal      |
    |   6   | Shirt       |
    |   7   | Sneaker     |
    |   8   | Bag         |
    |   9   | Ankle boot  |

    Args:
      cache_dir: directory where to cache the dataset locally. When None,
        defaults to `~/.keras/datasets`.

    Returns:
      Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`.

    **x_train**: uint8 NumPy array of grayscale image data with shapes
      `(60000, 28, 28)`, containing the training data.

    **y_train**: uint8 NumPy array of labels (integers in range 0-9)
      with shape `(60000,)` for the training data.

    **x_test**: uint8 NumPy array of grayscale image data with shapes
      (10000, 28, 28), containing the test data.

    **y_test**: uint8 NumPy array of labels (integers in range 0-9)
      with shape `(10000,)` for the test data.

    Example:

    ```python
    (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
    assert x_train.shape == (60000, 28, 28)
    assert x_test.shape == (10000, 28, 28)
    assert y_train.shape == (60000,)
    assert y_test.shape == (10000,)
    ```

    License:
      The copyright for Fashion-MNIST is held by Zalando SE.
      Fashion-MNIST is licensed under the [MIT license](
      https://github.com/zalandoresearch/fashion-mnist/blob/master/LICENSE).
    datasetszfashion-mnistz<https://storage.googleapis.com/tensorflow/tf-keras-datasets/)ztrain-labels-idx1-ubyte.gzztrain-images-idx3-ubyte.gzzt10k-labels-idx1-ubyte.gzzt10k-images-idx3-ubyte.gzT)exist_ok)origin	cache_dircache_subdirr   rb   )offsetN               )ospathjoin
expandusermakedirsappendr   gzipopennp
frombufferreaduint8reshapelen)r	   dirnamebasefilespathsfnamelbpathy_trainimgpathx_trainy_testx_tests               ]/var/www/html/engine/venv/lib/python3.12/site-packages/tf_keras/src/datasets/fashion_mnist.py	load_datar-      s   r ggll:7GIDE GG&&y1	
I-E 
e|#$		

 
58T	" Cf--rxxBC 
58T	" 
g--DLLL"b


 
58T	" Bfv{{}bhhqAB 
58T	" 
gw||~rxxCKKKR


 W///!C C
 

B B
 
s2   "5H8AH*(5H6>AIH'*H36H?I)N)
__doc__r   r   numpyr   tf_keras.src.utils.data_utilsr    tensorflow.python.util.tf_exportr   r-        r,   <module>r4      s7      	  2 : 67^0 8^0r3   