
    0h                     v    d Z ddlZddlmZ  ed      d
d       Z ed      d
d       Z ed      dd	       Zy)zNumpy-related utilities.    N)keras_exportzkeras.utils.to_categoricalc                    t        j                  | d      } | j                  }|r$|d   dk(  rt        |      dkD  rt	        |dd       }| j                  d      } |st        j                  |       dz   }| j                  d   }t        j                  ||f|      }d|t        j                  |      | f<   ||fz   }t        j
                  ||      }|S )a  Converts a class vector (integers) to binary class matrix.

    E.g. for use with `categorical_crossentropy`.

    Args:
        y: Array-like with class values to be converted into a matrix
            (integers from 0 to `num_classes - 1`).
        num_classes: Total number of classes. If `None`, this would be inferred
          as `max(y) + 1`.
        dtype: The data type expected by the input. Default: `'float32'`.

    Returns:
        A binary matrix representation of the input as a NumPy array. The class
        axis is placed last.

    Example:

    >>> a = tf.keras.utils.to_categorical([0, 1, 2, 3], num_classes=4)
    >>> print(a)
    [[1. 0. 0. 0.]
     [0. 1. 0. 0.]
     [0. 0. 1. 0.]
     [0. 0. 0. 1.]]

    >>> b = tf.constant([.9, .04, .03, .03,
    ...                  .3, .45, .15, .13,
    ...                  .04, .01, .94, .05,
    ...                  .12, .21, .5, .17],
    ...                 shape=[4, 4])
    >>> loss = tf.keras.backend.categorical_crossentropy(a, b)
    >>> print(np.around(loss, 5))
    [0.10536 0.82807 0.1011  1.77196]

    >>> loss = tf.keras.backend.categorical_crossentropy(a, a)
    >>> print(np.around(loss, 5))
    [0. 0. 0. 0.]
    intdtype   Nr   )	nparrayshapelentuplereshapemaxzerosarange)ynum_classesr   input_shapencategoricaloutput_shapes          U/var/www/html/engine/venv/lib/python3.12/site-packages/tf_keras/src/utils/np_utils.pyto_categoricalr      s    N 	% A''K {2!+K0@10DK,-			"AffQi!m	
A((A{+59K#$K		!a +/L**[,7K    zkeras.utils.to_ordinalc                 B   t        j                  | d      } | j                  }|r$|d   dk(  rt        |      dkD  rt	        |dd       }| j                  d      } |st        j                  |       dz   }| j                  d   }t        j                  |dz
        }t        j                  t        j                  |d      |dg      }t        j                  ||dz
  f|      }d||t        j                  | d      k  <   ||dz
  fz   }t        j
                  ||      }|S )aw  Converts a class vector (integers) to an ordinal regression matrix.

    This utility encodes class vector to ordinal regression/classification
    matrix where each sample is indicated by a row and rank of that sample is
    indicated by number of ones in that row.

    Args:
        y: Array-like with class values to be converted into a matrix
            (integers from 0 to `num_classes - 1`).
        num_classes: Total number of classes. If `None`, this would be inferred
            as `max(y) + 1`.
        dtype: The data type expected by the input. Default: `'float32'`.

    Returns:
        An ordinal regression matrix representation of the input as a NumPy
        array. The class axis is placed last.

    Example:

    >>> a = tf.keras.utils.to_ordinal([0, 1, 2, 3], num_classes=4)
    >>> print(a)
    [[0. 0. 0.]
     [1. 0. 0.]
     [1. 1. 0.]
     [1. 1. 1.]]
    r   r   r   r	   Nr   )r
   r   r   r   r   r   r   r   tileexpand_dimsr   )r   r   r   r   r   range_valuesordinalr   s           r   
to_ordinalr!   P   s   8 	% A''K {2!+K0@10DK,-			"AffQi!m	
A99[1_-L772>>,:QFCLhh;?+59G45GL2>>!R001+/!33Ljj,/GNr   zkeras.utils.normalizec                     t        j                  t         j                  j                  | ||            }d||dk(  <   | t        j                  ||      z  S )zNormalizes a Numpy array.

    Args:
        x: Numpy array to normalize.
        axis: axis along which to normalize.
        order: Normalization order (e.g. `order=2` for L2 norm).

    Returns:
        A normalized copy of the array.
    r	   r   )r
   
atleast_1dlinalgnormr   )xaxisorderl2s       r   	normalizer*      sF     
ryy~~a5	6BBrQwKr~~b$'''r   )Nfloat32)r      )__doc__numpyr
    tensorflow.python.util.tf_exportr   r   r!   r*    r   r   <module>r1      sb      : *+5 ,5p &', (,^ %&( '(r   